在影视作品里,我们看过太多机器人失控的场面。一些应对方案的段子也早已烂熟于心:断网、拔电、重启三连,一键送它回炉重造。
但现在,这一套流程可能不太管用了。
今天,Google DeepMind 推出了一款全新机器人控制模型——Gemini Robotics On-Device。这款大模型能在机器人本地运行,集视觉识别、语言理解和动作执行于一体。
而它最大亮点在于,即使完全离线,它也能理解人类指令,流畅完成任务。
比起诸如 ChatGPT、Gemini 等擅长聊天、写作、答题的大模型,Gemini Robotics On-Device 则给机器人装上了一个真正的「大脑」,让其也能具备类似的理解力和执行力。
它本质上是一个专为双臂机器人打造的 VLA 基础模型,顾名思义,Vision(视觉)+Language(语言)+Action(动作),三者结合,看得见、听得懂、动得了,是它的基本素养。
举例而言,你可以对机器人发出请求:「请把这件衣服叠好,再放进背包里,拉上拉链。」过去这需要提前编写程序、分解动作,现在 Gemini On-Device 可以直接理解这句话的意思,然后一步一步执行下来。
那既然联网也能跑,为什么还要费劲折腾本地运行?答案不外乎速度和稳定性。
机器人若需将数据传至云端、等待服务器分析再返回结果,必然产生延迟。在医疗操作、灾难救援、工厂自动化等任务中,延迟容错空间几乎为零。何况,现实中许多地方网络条件差,甚至完全无网。
实际上,让机器人顺利应对复杂、动态的现实任务,一直是 AI 领域最难啃的骨头之一。
从公开视频看,Gemini On-Device 已能胜任多种常见场景,如叠衣、拉链、抓取陌生物体并放置到指定位置。而这一切得益于它的学习机制。